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Abstract

Training-free open-vocabulary semantic segmentation has
advanced with vision-language models like CLIP, which ex-
hibit strong zero-shot abilities. However, CLIP’s attention
mechanism often wrongly emphasises specific image tokens,
namely outliers, which results in irrelevant over-activation.
Existing approaches struggle with these outliers that arise
in intermediate layers and propagate through the model,
ultimately degrading spatial perception. In this paper, we
propose a Self-adaptive Feature Purifier framework (SFP)
to suppress propagated outliers and enhance semantic rep-
resentations for open-vocabulary semantic segmentation.
Specifically, based on an in-depth analysis of attention re-
sponses between image and class tokens, we design a self-
adaptive outlier mitigator to detect and mitigate outliers
at each layer for propagated feature purification. In ad-
dition, we introduce a semantic-aware attention enhancer
to augment attention intensity in semantically relevant re-
gions, which strengthens the purified feature to focus on
objects. Further, we introduce a hierarchical attention in-
tegrator to aggregate multi-layer attention maps to refine
spatially coherent feature representations for final segmen-
tation. Our proposed SFP enables robust outlier suppres-
sion and object-centric feature representation, leading to
a more precise segmentation. Extensive experiments show
that our method achieves state-of-the-art performance and
surpasses existing methods by an average of 4.6% mloU on
eight segmentation benchmarks. The code is released at:
https://github.com/Kimsure/SFP.

1. Introduction

Open-vocabulary semantic segmentation (OVSS) [4, 58]
seeks to partition an image into distinct regions and as-
sign pixel-level labels to arbitrary semantic categories. Un-

*Corresponding author: siyue.yu02@xjtlu.edu.cn

(e) ® (® ()

Figure 1. Visualization of attention and feature maps. (a) Attention
map of the selected target object token (marked as ). (b) Attention
map of the selected background token (marked as ). (c) Attention
map of the class token. (d) Diagonal weights of the attention map
of each image token. (e) Detected outliers. (f) - (h) output feature
map of CLIP [38], SCLIP [45], and our SFP.

like traditional semantic segmentation, OVSS must han-
dle an open set of classes, making it more challeng-
ing. Vision-language models (VLM), such as CLIP [38],
demonstrate remarkable zero-shot performance by lever-
aging large-scale image-text pairs [39]. Thus, existing
approaches can be categorized into two pipelines: fine-
tuning CLIP or training-free CLIP. Although the fine-tuning
pipeline yields superior performance, it risks overfitting
and compromises generalization [30, 43]. In contrast, the
training-free pipeline preserves CLIP’s original generaliza-
tion capability without additional training, which is more
convenient and efficient.

Recent training-free methods [12, 40] have demonstrated
that in the original CLIP’s pair-wise attention maps, there
exist the same highly correlated image tokens for all input
tokens, such as those marked with the white box in Fig. |
(a) - (b). In such a situation, regardless of whether it is the
target image token (Fig. | (a)), the background image to-



ken (Fig. | (b)), or the class token (Fig. 1 (c)), the pair-wise
token relationships within the attention map are all over-
activated for these identical tokens, i.e., outliers. Conse-
quently, when aggregated with outliers, the derived seman-
tic feature representation is easily polluted to overempha-
size these outliers and the interpretation of the target region
is impeded, e.g., the feature map of ‘car’ in Fig 1 (f) focuses
on the outliers instead of the object itself.

To mitigate outliers and ensure more accurate semantic
feature representation, many training-free approaches have
presented diverse modifications to the self-attention mecha-
nism in the last layer [14, 16, 24, 45]. While these strategies
effectively restrict CLIP’s attention to ignore outliers, some
remain unfiltered, as shown in Fig. | (g). Moreover, some
approaches [2, 12] rely on empirical parameter tuning to de-
tect and remove a fixed number of outliers, which is less ro-
bust to different backbones and images. Beyond these opti-
mization approaches, several studies [12, 40] further reveal
that outliers predominantly appear in the intermediate lay-
ers. In this way, once outliers emerge, they will propagate
through subsequent layers, continuously affecting semantic
feature representations. Yet, previous approaches fail to an-
alyze and address outliers in the intermediate layers so that
outliers are easily propagated to pollute the final semantic
feature. Thus, our objective is to adaptively eliminate out-
liers across multiple layers to achieve more robust semantic
feature representations without training.

Building on these insights, we propose a Self-adaptive
Feature Purifier framework (SFP) to resolve outliers adap-
tively and enhance semantic representations for CLIP-based
training-free OVSS. Firstly, we design a Self-adaptive Out-
lier Mitigator (SOM) to identify and mitigate outliers across
multiple layers. Tokens are expected to focus primarily on
their relevant regions, especially themselves, rather than ir-
relevant regions in the attention map. However, as shown in
Fig. | (d), we observe that the self-response of image tokens
in the attention map is not always prominent, especially out-
liers. The comparison of Fig. 1 (c) & (d) reveals that outliers
exhibit a stronger response to the class token than their self-
response. Hence, our SOM can identify outliers by simply
computing the difference between the self-response values
of the image tokens in the attention map (i.e., the diagonal
weights of the attention map) and their attention values with
the class token. The detected outliers are shown in Fig. |
(e). In this way, our parameter-free SOM enables adaptive
detection across various layers to mitigate the propagating
influence of outliers without manual tuning.

Nevertheless, outliers not only cause tokens to overem-
phasize them but also impede tokens’ responses to semantic
regions in the attention map. Therefore, merely removing
the outliers can’t directly increase the attention weights of
the related regions. To enhance the tokens’ attention re-
sponses to semantic regions, we propose a Semantic-aware

Attention Enhancer (SAE). SAE incorporates the self-self
attention mechanism in CLIP’s last layer and applies it
to the purified feature derived from SOM at the penulti-
mate layer, enabling a better focus on semantic regions.
In addition, shallow attention maps typically contain struc-
tured object information and focus on relevant semantic re-
gions [27, 30]. To further enhance the precise spatial per-
ception of the final feature map, we propose a Hierarchical
Attention Integrator (HAI) as an assistant to the SAE, where
the attention maps in previous layers are firstly processed to
mitigate the influence of the outliers and then integrated to
refine the final semantic feature for prediction. The refined
semantic feature for the final prediction is shown in Fig. |
(h). Our SFP can generate a more purified and complete
semantic feature for segmentation.

We conduct comprehensive experiments to evaluate the
proposed SFP. Our method outperforms existing methods
and achieves state-of-the-art (SOTA) performance across
eight evaluation datasets. In summary, our contributions are
concluded as follows:

* We present a Self-adaptive Feature Purifier framework
(SFP) for training-free OVSS, which can derive a more
accurate semantic feature to strengthen the final open-
vocabulary semantic segmentation.

* We propose a simple yet effective mechanism, Self-
adaptive Outlier Mitigator (SOM), which adaptively de-
tects and mitigates outliers across CLIP’s diverse layers
so that the influence of the propagated influence of out-
liers can be suppressed.

* We introduce a Semantic-aware Attention Enhancer
(SAE) and a Hierarchical Attention Integrator (HAI) to
further refine the semantic feature relationships on rele-
vant regions, aggregating the more relevant semantic fea-
ture for final prediction.

* Comprehensive experiments demonstrate that SFP de-
rives the best performance under a fair comparison e.g.,
SFP achieves a gain of 5.6% mloU on Cityscapes and an
average gain of 4.6% mloU across eight datasets.

2. Related Work

2.1. pre-trained Vision-Language Models

Pre-trained vision-language models [17, 26, 38] have drawn
significant attention for their ability to bridge visual and tex-
tual modalities. CLIP [38] has emerged as a highly success-
ful model trained on a large-scale dataset of image-text pairs
using contrastive learning. OpenCLIP [9] builds upon CLIP
by leveraging public datasets such as LAION [39]. Despite
their strong zero-shot capabilities, these models are pre-
trained at the image level for classification. This presents
a notable limitation: the attention maps of VLMs tend to
overemphasize outliers rather than semantic image tokens,
leading to insufficient capture of spatial details. This draw-



back hinders the performance in dense prediction tasks like
semantic segmentation, which demands precise pixel-level
understanding. Our goal is to adaptively detect and miti-
gate the impact of these outliers and enhance the semantic
feature representation for dense prediction tasks.

2.2. Open-vocabulary Segmentation

Semantic segmentation involves the pixel-wise classifica-
tion of an image. Compared with the traditional segmenta-
tion methods [6, 8, 31, 49] that are trained and evaluated on
the same fixed set of seen classes. OVSS methods [36, 59]
aim to recognize and segment unseen objects during infer-
ence by harnessing the zero-shot ability of VLMs. Existing
works can be broadly divided into two categories: training-
based and training-free.

Training-based Methods Training-based methods [18, 37,
56] typically require fine-tuning on a fixed set of categories
from a pixel-level annotated dataset. Some approaches fol-
low a two-stage pipeline, where the first stage extracts the
mask proposals, and the second stage assigns semantic la-
bels to them. For instance, OVSeg [51] first trains class-
agnostic mask proposals using the query-based framework
Mask2Former [8] and then fine-tunes CLIP [38] to classify
the cropped and masked images. Other approaches adopt a
single-stage pipeline. SAN [52] introduces a side adapter
to adapt CLIP [38] for both classification and segmenta-
tion. SED [48] presents a simple encoder-decoder architec-
ture with category early rejection for fast inference. CAT-
Seg [10] constructs a pixel-level cost map for segmentation.
However, these training-based methods are prone to over-
fitting the training dataset, which limits the generalization
ability due to fine-tuning CLIP.

Training-free Methods Unlike training-based methods,
training-free methods [20, 41] aim to directly adapt VLMs
for OVSS without extra training. Several approaches lever-
age the vision foundation models [5, 21, 42] to improve
CLIP’s spatial coherence. LaVG [19] uses DINO [5] for
panoptic cuts, which iteratively discovers object masks un-
til all image pixels are covered. ProxyCLIP [25] adjusts
attention weights based on affinities learned from DINO’s
feature correspondence. However, these methods fail to ex-
ploit CLIP’s inherent potential. Other efforts aim to modify
CLIP’s final layer to address its poor spatial consistency.
For example, MaskCLIP [14] only utilizes the value fea-
ture of the final layer for prediction. CLIPtrase [40] inte-
grates self-self attention with clustering for post-processing.
SCLIP [45] and ClearCLIP [24] both modify the last layer
self-attention mechanism to better represent the local infor-
mation. Nevertheless, few training-free methods address
propagated outliers, which act as noisy inputs across mul-
tiple layers and degrade spatial perception. In contrast,
our approach enables adaptive detection and mitigation of
propagated outliers among various layers, which improves

CLIP’s semantic awareness and boosts its internal potential.

3. Method

3.1. Overview

Fig. 2 depicts the whole framework of SFP, including four
main modules: a frozen CLIP backbone to encode the
input image and text descriptions, a SOM to detect and
eliminate outliers, an SAE to augment the attention inten-
sity on related semantic regions, and an HAI that lever-
ages intermediate-layer attention maps to assist SAE for
enhanced semantic feature representation. The complete in-
ference process is as follows:

1) First, the image and text descriptions are input to the
CLIP encoder for the image feature and the text feature.
Among the CLIP image encoder, our SOM is added af-
ter each transformer layer to mitigate the outliers and
generate the purified feature for propagation.

2) Then, the derived final feature map from the last SOM,
Fsou, is input to our SAE, which replaces the final
transformer layer. SAE emphasizes the attention values
of relevant semantic regions to generate the strengthened
semantic feature Fis 4.

3) After that, our HAI extracts the multi-layer attention
maps from the image encoder to further refine Fs 4 for
the final semantic feature F),;;.

4) Finally, the segmentation result is obtained by calculat-
ing the cosine similarity of the final semantic feature
F,;s and text feature F},;.

3.2. Preliminary

In general, the training-free OVSS approach requires
CLIP [38], which encompasses an image encoder and a
text encoder to acquire multi-model features. Subsequently,
these features are aligned via linear projection layers. In
detail, the input image is first partitioned into a token se-
quence X;, = [Tas, T1,..,xy] € RVTUX where z;
denotes the image token embedding, x.;s denotes the class
token embedding, NV is the image token sequence length,
and d is the dimension of token embeddings, respectively.
Then, these tokens are input to the image encoder, which
contains a stack of vision transformer layers.

Each transformer layer consists of a multi-head self-
attention (MHSA) mechanism and a feed-forward network
(FFN) layer to extract the image feature. Specifically, in
each MHSA, the input sequence X;,, is mapped to query,
key, and value embeddings, @, K,V € R(N+1xd - After-
wards, () and K are calculated to obtain the attention map
Attn € RINFUX(V+1) 'which can be formulated as:

T

K
Attn = Softmax(Q

i)

where 7" means matrix transposition. After that, the at-
tention map is multiplied V' to aggregate the global infor-
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Figure 2. Framework of our SFP. It contains four main modules: a frozen CLIP backbone for feature extraction, a Self-adaptive Outlier
Mitigator (SOM) at each image encoder layer for outlier detection and elimination, a Semantic-aware Attention Enhancer (SAE) at the last
layer to emphasise attention values of relevant semantic regions and a Hierarchical Attention Integrator (HAI) for object-centric feature
representation. The segmentation result is generated by calculating the cosine similarity between the optimized semantic feature F;s and

the text feature Fi,¢.

mation, and an FFN is used to obtain the image feature
Fimg € RIN+1xd formulated as:

Fing = FEN(AttnV). )

Since the class embedding z.;s is not used to predict the
segmentation result, we omit it and reshape Fj,,, to obtain
the visual feature F,;; € R"*%*X4 where h and w denote
the height and width of the feature map.

Meanwhile, the textual description is derived from the
standard ImageNet [13] prompts and transformed to the text
feature F},, € R°*? with CLIP’s text encoder, where c rep-
resents the number of classes. By calculating the cosine
similarity between F,;s and Fj,;, the segmentation map
Seg € R™*W can be generated like:

Seg = U(arg max cos(Fyis, Fiat)), 3)

where cos(-) means cosine similarity calculation and U(+)
denotes the upsampling operation to match the original in-
put image size. H and W denote the height and width of
the input image, respectively.

3.3. Self-adaptive Outlier Mitigator

CLIP [38] is pre-trained at the image level for classification,
which tends to concentrate on the most discriminative fea-
ture that is important for classification. In this way, all input

tokens, including both class and image tokens, will empha-
size these identical tokens (outliers) in attention maps [12].
In other words, the corresponding outlier column in the at-
tention map will be highlighted. Further, given that the clas-
sification process relies solely on the class token, the class
token may exhibit a stronger response to the outlier in at-
tention maps compared to image tokens. This prompts us to
investigate whether the self-relevance of image tokens and
the class token’s similarity across all image tokens could
serve as potential indicators to identify outliers.

Based on the above assumption, to robustly mitigate
outliers, we introduce a Self-adaptive Outlier Mitigator
(SOM) to detect and eliminate the outliers automatically.
In particular, we use the attention map Attn to obtain the
self-attention weights of image tokens, denoted as Attn; ;,
and their attention weights to the class tokens, denoted as
Attnes i, where i denotes the i-th image token and cls de-
notes the class token. By comparing the difference between
Attn; ; and Attn.s ;, we obtain the set of outliers S, since
the self-attention weights should be higher than others. This
detection process of SOM is formulated as,

S= {’L | Att’l’Liﬂ' < Attncls,i}, 1€ [1,N] s %)

where S denotes the set of outliers.
After recognizing outliers, we propose eliminating them
at the feature level rather than modifying the attention map



to prevent potential model collapse. Inspired by previous
work [2], it’s crucial to ensure the semantic consistency of
the feature map, and directly masking outliers at the fea-
ture level is not an appropriate approach. Thus, SOM can
eliminate outliers through in-place merging, where the de-
tected outliers are replaced with the average value of its 8-
neighbours. That is to say, the derived Fj,,, in the original
attention mechanism will be updated through our SOM as

1

. = Z Fimglv], ues

Fimg[u] =18 vENs(u) N E))
Fimglul, otherwsie

where Ng(u) means the 8-neighbour non-outlier tokens of
the u-th point and F’img denotes the updated feature. In
this way, our SOM initially identifies the outlier and then
leverages surrounding token features to replace the detected
one. This process can mitigate the adverse influence exerted
by the outliers and maintain the feature distribution that is
crucial for CLIP’s image encoder. By doing so, the purified
and superior semantic feature representation is generated.

Furthermore, our SOM exhibits remarkable versatility in
that it can be applied to each individual layer of the im-
age encoder. This allows for the detection of outliers and
the generation of purified features at multiple levels. In
this manner, our parameter-free SOM establishes an effi-
cient and precise mechanism for detecting and eliminat-
ing outliers that propagate across various layers of the im-
age encoder. This mechanism is instrumental in preserving
accurate semantic information and feature representations
throughout the entire image encoder, thereby enhancing its
overall performance and reliability.

Figure 3. Comparison of different feature visualization. (a) Noisy
feature with outliers. (b) Purified feature with SOM. (¢) Semantic
feature with SAE. It’s seen that the proposed SAE strengthens the
semantic regions with higher object activation.

3.4. Semantic-aware Attention Enhancer

The comparison of Fig. 3 (a) & (b) indicates that the pu-
rified feature Fspps generated by the last SOM effectively
ignores the irrelevant regions of outliers, marked as white
boxes. However, it’s also observed from Fig. 3 (b) & (c)
that the object activation of Fspys is not salient enough,

which indicates that eliminating outliers can’t contribute to
the attention response intensity.

To address this issue, we propose a Semantic-aware At-
tention Enhancer (SAE) to strengthen the object activation
in CLIP’s last layer, where the self-self attention mechanism
is used to derive better feature relationships,

QT KKT
_|_

Vd Vd
where Ating g represents the semantic-aware attention
map and A denotes the logit scale used to sharpen atten-
tion scores, set to 0.5. Then, the semantic feature Fs4p is

obtained through the residual connection with the purified
feature Fsons as follows:

Attngap = Softmax(A( ), (6)

Fsag = Fsom + FFN(AttnsapFsom)- @)

The self-self attention mechanism has shown a strong abil-
ity to construct feature relationships [16, 24, 45]. There-
fore, applying self-self attention to our purified feature en-
ables the establishment of more precise spatial correlations.
These accurate spatial correlations play a crucial role in en-
abling each point to aggregate the relevant semantic fea-
ture effectively. As illustrated in Fig. 3 (b) & (c), SAE sig-
nificantly augments attention intensity in semantic regions
compared to the feature solely processed by SOM.

3.5. Hierarchical Attention Integrator

To further refine the generated semantic feature Fssp, we
leverage attention maps from shallow layers to capture dis-
criminative pair-wise feature relationships since shallow
layers typically focus on object structures [27]. To this
end, we propose a Hierarchical Attention Integrator (HAI),
which integrates multi-layer attention maps to refine Fs4g.

Instead of using the original attention maps with outliers,
HALI integrates attention maps from each transformer layer
while excluding the detected outlier weights to avoid infor-
mation pollution. Firstly, HAI employs the outlier set S to
select the non-outlier weights of each attention map, which
can be formulated as,

- Attn,;, ifi¢ S
A, = Al T0ES ®)
’ 0 otherwise

—— .
where Attn and S! denote the filtered attention map and
the outlier set at the [-th layer. j and ¢ correspond to the
row and column indices of the attention map. Next, HAI

integrates Attnl from each layer, formulated as,
L—1 .
A=Y A ©)
=1

where A denotes the integrated attention map, and L de-
notes the total number of transformer layers.



Extra Trainin, with background without background
Methods Pub. & Year | o kbone  free ¢ V2l PC60g Object | V20 PC59 Stuffg ADE City | Avg.
GroupVit [50]  CVPR'22 X X 504 187 275 797 234 153 92 111 294
SegCLIP [32] ICML23 X X 526 247 265 - - - - - -
TCL [7] CVPR’23 X X 550 304 316 832 339 224 171 240 372
DINOiser’ [47]  ECCV’24  DINO X 62.1 324 348 809 359 246 200 317 403
SAM-CLIP [46] ECCV’24  SAM X 60.6 292 - - - S VA T -
PnP-OVSST[33] CVPR24  BLIP v - - 362 513 280 179 142 - -
LaVGT [19] ECCV’24  DINO v 621 316 342 825 347 232 158 262 388
ProxyCLIP' [25]  ECCV'24  DINO v 613 353 375 803 390 265 202 381 423
CLIP [38] ICML 21 X v 186 99 81 494 111 57 31 65 141
MaskCLIP [14]  ECCV’22 X v 388 236 206 749 264 164 98 126 279
CLIPSurgery [28]  PR’25 X v - 293 - - - 219 - 314 -
CaR [44] CVPR'24 X v 486 305 366 737 395 - 177 - -
GEM [3] CVPR'24 X v 462 - - - 326 157 - - -
CLIPtrase [40] ~ BCCV’24 X v 509 299 436 810 338 228 164 213 375
ClearCLIP* [24]  ECCV’24 X v 570 326 330 809 359 239 167 300 388
SCLIP* [45] ECCV’24 X v 597 317 335 815 345 227 165 323 39.1
NACLIP* [16]  WACV’25 X v 589 322 332 797 352 233 174 355 394
SEP (Ours) X vV 639 372 379 845 399 264 208 411 44.0

Table 1. Quantitative comparison of our SFP against other approaches across eight segmentation benchmark datasets. The best and second-
best results are marked with bold and underline, respectively. | indicates that the additional backbone settings follow the original paper. *
indicates the results are re-evaluated using the official implementation.

After integrating multi-layer attention maps, we deploy
a normalization strategy to optimize A instead of simply
averaging it. Inspired by previous works [22, 35], we itera-
tively apply row-wise and column-wise normalization to A
for a more object-centric attention distribution, leading to
a stronger focus on relevant regions. This process can be
formulated as,

Agar = norm.(norm,(A)), (10)

where Ap 45 denotes the normalized attention map, norm,
and norm,. denote the column-wise and row-wise normal-
ization respectively.

Then, Aga; is multiplied with the semantic feature
Fs 4 to obtain the final semantic feature F,;s for segmen-
tation, which is formulated as follows:

Fuis = AuarFsag. (1D

Finally, we compute the cosine similarity between F},;s and
the text feature F},; extracted from the CLIP text encoder
to predict the segmentation map, as formulated in Eq. 3.

4. Experiment

4.1. Experimental Settings

Datasets We conduct comprehensive experiments to ver-
ify the effectiveness of our method on diverse benchmark
datasets: PASCAL VOC 2012 [15], PASCAL Context [34],
and COCO [29]. These datasets are categorized into two
settings: 1) with a background class, namely V20, PC59,

and Stuff; 2) without the background class, namely V21,
PC60, and Object. We also report results on the ADE20K
(ADE) [57] and Cityscapes (City) [11] datasets.
Implementation Details Similar to existing training-free
methods, we adopt CLIP ViT-B/16 with the original pre-
trained weight [38]. Following previous works [2, 45], we
combine standard ImageNet prompts [13] with the class
names to construct text descriptions. For a fair comparison
with previous works [25, 45], we resize images with a short
side of 336 pixels (or 560 pixels for the high-resolution
Cityscapes dataset) and apply sliding window inference us-
ing a 224 x 224 window with a 112 x 112 stride. Our
experiments are conducted using one NVIDIA 3090 GPU.

4.2. Comparison with State-of-the-art Methods

Our SFP is evaluated against existing SOTA methods, in-
cluding both training-based and training-free approaches.
The post-processing mask refinement techniques, such as
PAMR [1] or DenseCRF [23], are not included for a fair
comparison. The standard mean intersection over union
(mIoU) is used as the metric for evaluation.
Quantitative Evaluation The main results are summarized
in Tab. 1, where all evaluations are conducted using CLIP
ViT-B/16 as the backbone to ensure a fair comparison. We
compare SFP against multiple methods, including training-
based methods, training-free methods with extra backbones,
and training-free methods without extra backbones.

As shown in Tab. 1, our SFP outperforms existing SOTA
methods, regardless of whether an additional backbone is
introduced or not. In particular, compared with existing
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Figure 4. Qualitative Results Comparison. We compare our SFP with CLIP [38], ClearCLIP [24], SCLIP [45] and NACLIP [16] without
post-processing. It’s observed that SFP generates more precise segmentation results.

training-free methods without extra backbones [16, 24, 45]
or cluster methods [53-55], our SFP achieves an average
gain of 4.6% mloU over previous SOTA NACLIP [16].
Specifically, On the V20 and V21 dataset [15], SFP sur-
passes NACLIP [16] 4.8% and 5% mloU, respectively.
These improvements indicate that our SFP can generate
more purified feature maps for more precise segmentation.
Beyond that, SFP outperforms SOTA training-free methods
with extra backbones, e.g., ProxyCLIP [25], with a gain
of 3.0% mIoU on the Cityscape [11] dataset and an aver-
age gain of 1.7% mloU on eight datasets. Our SFP can
even beat DINOiser [47], which requires both training and
an extra backbone, with an average improvement of 3.7%
mloU. These results highlight our SFP boosts CLIP’s inter-
nal potential and reveal that feature purification does mat-
ter in training-free OVSS, where more purified features can
predict better segmentation masks.

Qualitative Evaluation In Fig. 4, we compare the visu-
alization results of various training-free methods without
extra backbones, including CLIP [38], ClearCLIP [24],
SCLIP [45], NACLIP [16] and our SFP. In particular, the
segmentation maps obtained by vanilla CLIP [38] exhibit
significant noises, unveiling its limitations in spatial local-
ization. Besides, in complex scenarios, like ‘sofa’ in the
second row, SCLIP [45] and NACLIP [ 16] fail to capture the
complete segmentation mask. In contrast, our SFP can pre-
dict more accurate and complete segmentation maps. These
results indicate that our SFP has a good ability to predict
comprehensive segmentation masks.

4.3. Ablation Study

Comprehensive ablation studies are performed to analyze
the effectiveness of our proposed mechanisms. Unless oth-
erwise specified, we utilize CLIP with ViT-B/16 backbone
and evaluate on V21 [15] and ADE [57] datasets for back-
ground and non-background settings, respectively.

Effect on each proposed module We first conduct several
experiments to validate the effectiveness of our proposed
modules of our SFP: SOM, SAE, and HAI by adding each
module step by step, where ClearCLIP [24] is used as the
baseline. As shown in Tab. 2, our SOM achieves a gain of
3.1% and 1.5% mloU on V21 and ADE datasets, respec-
tively. Further, SAE enhances attention intensity in relevant
regions, leading to an average gain of 1.7% mloU. Finally,
HAI helps our SFP reach 63.9% and 20.8% mloU on V21
and ADE datasets, which set the new SOTA performance.
Due to space constraints, more ablation studies about SOM
and SAE are summarized in the supplementary material.

SOM SAE HAI V21 ADE Avg.

0 570 167 369
1 v 60.1 182 392
2 v v 623 195 409
3

v v v 639 208 424

Table 2. Ablation results on each proposed module to validate the
impact on performance across V21 [15] and ADE [57] datasets.

More visualization on the ability of SOM to suppress
outlier propagation We visualize purified feature maps



Figure 5. Visualization of the feature purification across CLIP’s image encoder layers. (a) Feature maps without SOM purification. (b)

Feature maps purified by SOM.

AZ 5 8§ 10 11
V2I | 639 634 630 626 0625
ADE | 208 205 203 199 197

Avg. 424 420 417 413 411

Table 3. Ablation results on different selection strategies in HAI,
where Aﬁiﬁ) ~! represents the integrated attention map from Io to
the L — 1 layer. ‘1,5,8,10,11" indicates the value of /.

across CLIP’s layers, from the 2nd layer to the 9th layer,
which is shown in Fig. 5. It’s found that the outliers grad-
ually affect the aggregated features, especially from layer 6
to layer 9 in Fig. 5 (a). Then, with the help of our SOM, the
influence of outliers is mitigated layer by layer, like in Fig. 5
(b). Thus, our SOM can suppress the propagated outlier fea-
tures and gradually purify the overall semantic features.
Effect on hierarchical attention integrator A series of ab-
lation studies is conducted to investigate the optimal way to
leverage attention maps from different layers. We omit HAI
from our SFP to establish the baseline model for this exper-
iment. As summarized in Tab. 3, we take [y to represent the
starting layer. When [y = 1, our HAI performs best with
all attention maps selected. Besides, increasing [y from 1 to
11 decreases the segmentation performance, which demon-
strates the effectiveness of the shallow attention maps for
semantic feature refinement.

Backbone Methods V21 ADE Avg.
SCLIP [45] 506 148 327

LaVG [19] 548 155 352

ViT-B/32  ProxyCLIP [25] 579 167 373
NACLIP [16] 51.1 14.9 33.0

SFP 60.1 171  38.6

SCLIP [45] 444 109 277

LaVG [19] 521 173 347

VIiT-L/14  ProxyCLIP [25] 60.6 22.6 41.6

NACLIP [16] 522 173 348
SFP 64.7 221 434

Table 4. Comparison with other SOTA methods across different
CLIP backbones.

Effect on different CLIP backbones To validate the ro-
bustness, we further evaluate our SFP with other meth-
ods using different CLIP backbones, such as ViT-B/32 and
ViT-L/14. As summarized in Tab. 4, some methods, like
SCLIP [45] and LaVG [19], suffer from performance degra-
dation when applied to the larger backbone. In contrast,
SFP maintains superior performance across different back-
bones and achieves an improvement of 1.3% and 1.8%
mloU over ProxyCLIP [25] with ViT-B/32 and ViT-L/14
backbone, respectively. These results indicate that SFP can
robustly handle outliers derived from different backbones
and generate purified features for precise segmentation.

5. Conclusion

In this paper, we present a Self-adaptive Feature Pu-
rifier framework (SFP) to mitigate outlier propagation
for training-free open-vocabulary semantic segmentation.
Specifically, we propose SOM deployed at each layer of
the image encoder to identify and mitigate outliers by com-
paring attention weights between image and class tokens,
which generates purified features for propagation. Next, to
recover the semantic information affected by outliers, we
introduce SAE to strengthen object activation in the puri-
fied feature. Beyond that, we design HAI to utilize mul-
tilayer attention maps for refined object-centric representa-
tions. Extensive experiments show that SFP achieves supe-
rior segmentation performance compared to existing SOTA
methods on various datasets. Our SFP shows that feature
purification does matter for OVSS, and cleaner features can
predict more complete and accurate segmentation masks.
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Feature Purification Matters: Suppressing Outlier Propagation for
Training-Free Open-Vocabulary Semantic Segmentation

Supplementary Material

A. Overview

In this supplementary material, we provide more analy-
sis of CLIP’s attention mechanism (Sec. B), more ablation
experiments about our proposed modules (Sec. C), more
qualitative segmentation results (Sec. D), and more discus-
sions(Sec. E).

B. More analysis of CLIP’s attention

We conduct an in-depth analysis of CLIP’s attention distri-
bution using ViT-B/16 as the backbone model. Different
attention maps are visualized in Fig. 1, which reveals the
emergence of outliers and their distinct distribution.

First, as illustrated in Fig.1 (a), CLIP’s attention maps
exhibit a distinctive ‘band-like’ stripe pattern across differ-
ent layers, particularly from the 6th layer onward. This pat-
tern indicates that regardless of which image token is se-
lected, its attention is consistently drawn to specific tokens,
i.e. outliers, within these stripes. To further investigate this
phenomenon, we randomly select image tokens and visual-
ize their attention maps, as shown in Fig. 1 (b) & (c). It is
observed that once outliers emerge, their locations remain
nearly identical across different randomly chosen image to-
kens. This observation strongly correlates with the ‘band-
like’ stripe structure observed in Fig. 1 (a). Furthermore, we
analyze the attention map of the class token and find that its
outlier distribution aligns closely with that of the randomly
selected image token, as shown in Fig. | (d). This phe-
nomenon suggests that all input tokens consistently focus
on the same outliers. Moreover, the class token is prone
to exhibit a stronger response to the outlier than the image
tokens in the attention map [1]. Based on this, we argue
that the self-relevance of image tokens and the similarity be-
tween the class token and image token within the attention
map can act as an effective detector for outliers. Beyond
that, it’s seen that outliers do not appear in each layer, yet
they emerge in the deeper layers. Our proposed SOM can
be deployed at each CLIP’s image encoder layer to detect
outliers adaptively. Notably, if SOM doesn’t detect any out-
liers at a given layer, the original attention map and features
will be kept and propagated to the following layers.

C. More Ablation Studies

Visualization of feature purification of SOM We visual-
ize the outlier detection results on different input images.
As shown in Fig. 2, our SOM adaptively identifies outliers

Layer 2 Layer 4 Layer 6 Layer 8 Layer 10

(@

Figure 1. In-depth of CLIP’s attention mechanism across various
layers. (a) Attention maps of image tokens. (b) & (c) Attention
maps of the selected image token, marked as , (d) Attention maps
of the class token.

based on the distinct patterns of different input images with-
out any manual settings.

Figure 2. Visualization of outlier detection for different input im-
ages. (a) Image features with outliers. (b) Detected outliers by
our SOM. It’s seen that our SOM can adaptively identify different
numbers of outliers for feature purification.

Effect on semantic-aware attention enhancer As we de-
ploy self-self attention in our SAE to augment semantic co-
herence, we also explore different designs of self-self atten-
tion. We conduct the thorough experiment by taking Q-K



ClearCLIP NACLIP SFP (ours

Figure 3. More Open-Vocabulary Segmentation Results. We compare our SFP with CLIP [4], ClearCLIP [3], SCLIP [5] and NACLIP [2],
all without post-processing. Our SFP produces much clearer and more accurate segmentation results.



attention as the baseline without SAE and HAI in Tab. 1,
where the ‘+’ means directly adding the two kinds of at-
tention maps. It’s shown that different designs of self-self
attention achieve improvements over the baseline. Among
them, the ‘Q-Q + K-K’ combination surpasses the baseline
by an average of 1.7% mloU. This result indicates that such
a combination can help our SAE provide better token rela-
tionships for feature purification.

attention mechanism V21 ADE Avg.
Q-K (baseline) 60.1 18.2 39.2

0-Q 62.1 193 40.7
K-K 62.0 193 407
\TAY 614 189 402

Q-Q+KK 623 195 409

Q-Q+ V-V 619 191 405

K-K + V-V 61.1 187 399

Table 1. Ablation results on different designs of self-self attention
mechanism in our SAE.

D. More Visualization Comparison

Fig. 3 presents more segmentation visualizations. We com-
pare our SFP with CLIP [4], ClearCLIP [3], SCLIP [5] and
NACLIP [2]. These results highlight that our SFP consis-
tently delivers higher-quality and more precise segmenta-
tion maps than other approaches.

E. More discussions

E.1. About post-processing

Tab. 2 lists the post-process with PAMR results. PAMR
consistently improves performance, though the smaller gain
in our method suggests SFP can achieve good performance
without post-processing.

Methods ClearCLIP SCLIP SFP
post-process | X v b 4 4 b 4 v

voc20 809 81.5 | 81.5 83.1 | 845 849

Table 2. Comparison with SOTA methods via post-processing.

E.2. Performance effect on image-level global tasks

We compare our method with the original CLIP using the
class token and a single prompt ‘a photo of {}’ (Tab. 3).
As expected, our method shows limited classification per-
formance, likely due to the removal of outliers that disrupt
class token representation. This result aligns with the previ-
ous work [1], which shows that outlier tokens contribute
significantly to classification. Our training-free method

might degrade the class token, yet we argue that mitigat-
ing outliers during training is a more promising direction.
However, our task depends on patch tokens while outliers
impair segmentation. Removing them enhances patch to-
ken quality and improves performance.

Benchmarks Cifar100 Flowers102 OxfordPets
Accuracy Top-1 Top-5 | Top-1 Top-5 | Top-1 Top-5
CLIP 66.6 88.5 67.7 84.5 89.1 99.5
Ours 56.7 80.8 49.6 74.4 824 916

Table 3. Zero-shot classification performance with the class token.
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