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ABSTRACT. Image restoration is an ill-posed problem due to the infinite feasible
solutions for degraded images. Although CNN-based and Transformer-based approaches
have been proven effective in image restoration, there are still two challenges in restoring
complex degraded images: 1) local-global information extraction and fusion, and 2)
computational cost overhead. To address these challenges, in this paper, we propose a
lightweight image restoration network (CLG-INet) based on CNN-Transformer
interaction, which can efficiently couple the local and global information. Specifically,
our model is hierarchically built with a " Sandwich-like " structure of coupling blocks,
where each block contains three layers insequence (CNN-Transformer-CNN). The
Transformer layer is designed with two core modules: Dynamic Bi-Projected Attention
(DBPA), which performs dual projection with large convolutions across windows to
capture long-range dependencies, and Gated Non-linear Feed-Forward Network (GNFF),
which reconstructs mixed feature in-formation. In addition, we introduce interactive
learning, which fuses local features and global representations in different resolutions to
the maximum extent. Extensive experiments demonstrate that CLG-INet significantly
boosts performance on various image restoration tasks, such as deraining, deblurring, and
denoising.
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Figl. (a) Synthetic denoising (Urban100), (b) Real denoising (SIDD), (c) Deblurring
(Average), and (d) Deblurring (GoPro). Our model is lightweight and efficient.
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Contributions

® We propose CLG-INet, an interactive network for multiple image restoration tasks,
which is hierarchically built with multiple coupling blocks for CNN-Transformer
incorporation. It can effectively aggregate the information between local details and
global contexts.

® We design two effective and lightweight modules: the dynamic bi-projected attention
(DBPA) to enhance the modeling of long-range dependencies, and the gated non-
linear feed-forward network (GNFF) to control the forward flow of complementary
information for reconstruction.

® We introduce an intra-block coupling connection and an inter-block dual hybrid unit
for interactive learning, which preserves the well-embedded information flow for
feature propagation.

Method Overview

We present an efficient interactive network based on a hierarchical structure, named as
CLG-INet. In this section, we first introduce the overall architecture of CLG-INet. Next,
we describe the important components of the designed coupling block in detail. Finally,
we introduce the intra-block connection and the inter-block unit for interactive learning.
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Fig2. The architecture of the proposed CLG-INet.

CNN Layer

Our CNN layer cascades two convolutional kernels and a channel attention layer to
efficiently model local features with the residual learning strategy. We put the CNN
layer before and after the Transformer layer to form a "sandwich-like" structure,
where the first layer is intended to feed local features and the second one
complements detailed information subsequently. This structure enables collaborative
learning for CNN-Transformer complementary strengths.

Transformer Layer

To leverage the global representation, a Transformer layer is placed in the middle of
the coupling block. This layer aggregates global information from local features of the
first CNN layer and is transmitted to the second CNN layer for local-global
interaction. In addition, to reduce the calculation complexity, we modify the self-
attention module (DBPA) and feed-forward network (GNFF) of the Transformer.
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Fig3.

Dynamic Bi-Projected Attention.

Experlments

noise levels of 30, 50 and 70,
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Fig8. Visual comparisons of image deblurring on GoPro.

Conclusion

In this paper, we propose CLG-INet, a lightweight and interactive image restoration
network with a hierarchical structure. Specifically, we design several coupling blocks
to combine CNN layers and Transformer layers using a "sandwich-like" paradigm,
which effectively exploits and interacts with the local-global information. In addition,
we present two important modules, DBPA and GNFF, to sufficiently model the global
representation with less computational cost. In the multi-scale information propagation,
we introduce an intra-block coupling connection and an inter-block hybrid gated unit
for feature interaction, which simplifies the information flow and enhances the multi-
scale feature representation.
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