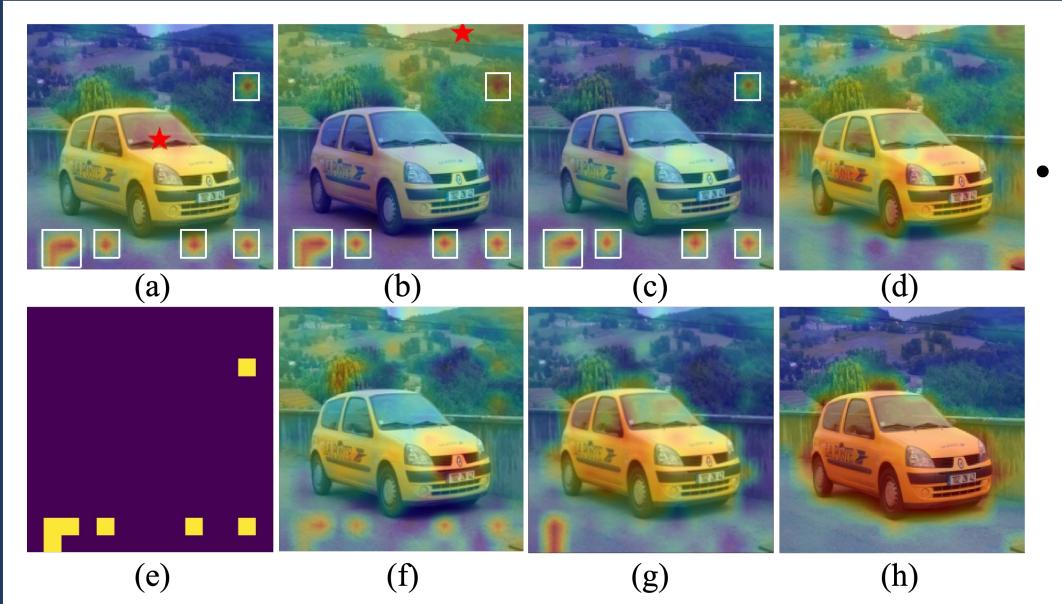


Feature Purification Matters: Suppressing Outlier Propagation for Training-Free Open-Vocabulary Semantic Segmentation

Shuo Jin, Siyue Yu*, Bingfeng Zhang, Mingjie Sun, Yi Dong, Jimin Xiao

Motivation & Introduction Layer 2 Layer 4 Layer 6 Layer 10


Limitations of CLIP

- The in-depth analysis of CLIP's attention reveals the emergence of outliers and their distinct distribution.
- Outliers tend to appear in deep layers.
- We argue that the selfrelevance of image tokens and the similarity between the class token and image token within the attention map can act as an effective detector for outliers.

Research Goal

• To resolve outliers adaptively and enhance semantic representations for CLIPbased training-free open-vocabulary semantic segmentation (OVSS).

Main Contributions

Visualization of our Self-adaptive Outlier Mitigator (SOM)

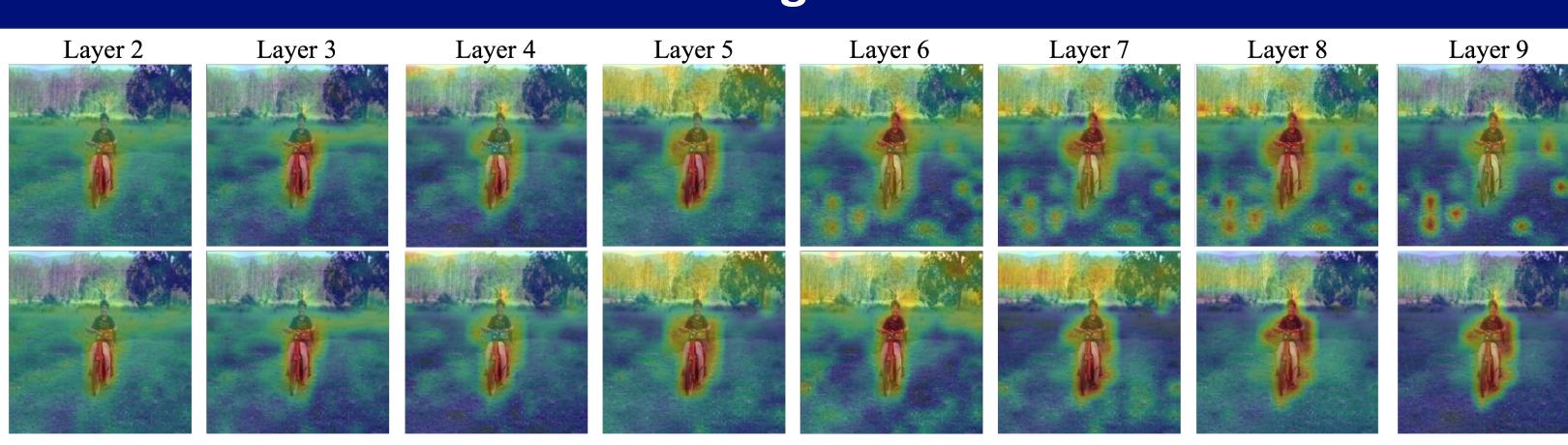
Self-adaptive Outlier Mitigator

In the attention map, simply compare the difference between the self-response values of the image tokens (i.e., the diagonal weights) and their attention values with the class token.

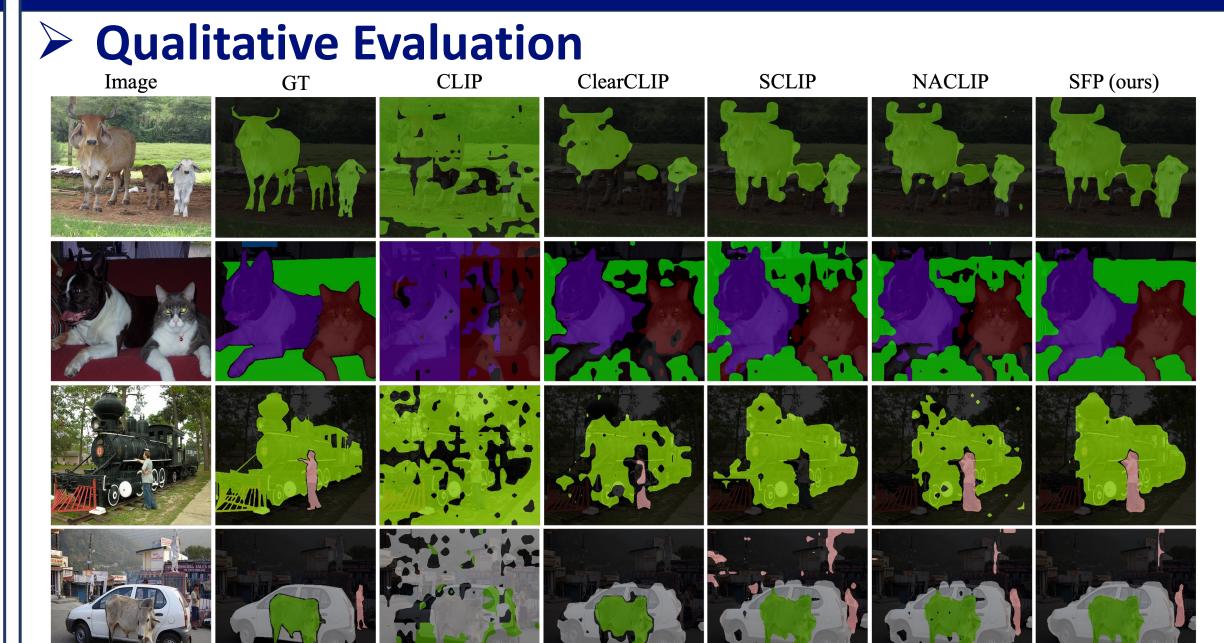
Methods Segmentation **Text Description** CLIP Image Encoder **CLIP Text** Encoder Cosine Similarity Matrix multiplication Text feature embedding Hierarchical Attention Integrator (HAI) In-place merging Semantic-aware Detected outliers Attention Enhancer (SAE **Self-Adaptive Outlier Mitigator (SOM)**

Self-adaptive Outlier Mitigator

To detect and eliminate the outliers automatically. Based on the comparison between self-response and class-response within the CLIP's self-attention map.


Semantic-aware Attention Enhancer

To strengthen the object activation in CLIP's last image encoder layer using the self-self attention mechanism, which is not considered in outlier mitigator.


Hierarchical Attention Integrator

To further refine the generated feature. Leverage attention maps from shallow layers to capture discriminative pair-wise feature relationships.

Outlier Mitigation Result

Experiments

Quantitative Evaluation

No extra training & backbone

Methods	Pub. & Year	Extra	Training	Wil	with background		without background					
Memous		backbone	free	V21	PC60	Object	V20	PC59	Stuff	ADE	City	A
GroupVit [50]	CVPR'22	×	×	50.4	18.7	27.5	79.7	23.4	15.3	9.2	11.1	29
SegCLIP [32]	ICML'23	×	×	52.6	24.7	26.5	-	-	-	-	-	
TCL [7]	CVPR'23	×	×	55.0	30.4	31.6	83.2	33.9	22.4	17.1	24.0	37
DINOiser [†] [47]	ECCV'24	DINO	×	62.1	32.4	34.8	80.9	35.9	24.6	20.0	31.7	40
SAM-CLIP [†] [46]	ECCV'24	SAM	×	60.6	29.2	-	-	-	-	17.1	-	
PnP-OVSS [†] [33]	CVPR'24	BLIP	/	-	-	36.2	51.3	28.0	17.9	14.2	-	
LaVG [†] [19]	ECCV'24	DINO	✓	62.1	31.6	34.2	82.5	34.7	23.2	15.8	26.2	38
ProxyCLIP [†] [25]	ECCV'24	DINO	✓	61.3	35.3	37.5	80.3	39.1	26.5	20.2	38.1	42
CLIP [38]	ICML'21	×	/	18.6	9.9	8.1	49.4	11.1	5.7	3.1	6.5	14
MaskCLIP [14]	ECCV'22	×	✓	38.8	23.6	20.6	74.9	26.4	16.4	9.8	12.6	27
CLIPSurgery [28]	PR'25	×	/	-	29.3	-	-	-	21.9	-	31.4	
CaR [44]	CVPR'24	×	✓	48.6	30.5	36.6	73.7	<u>39.5</u>	-	<u>17.7</u>	-	
GEM [3]	CVPR'24	×	/	46.2	-	-	-	32.6	15.7	-	-	
CLIPtrase [40]	ECCV'24	×	✓	50.9	29.9	43.6	81.0	33.8	22.8	16.4	21.3	37
ClearCLIP* [24]	ECCV'24	×	✓	57.0	<u>32.6</u>	33.0	80.9	35.9	<u>23.9</u>	16.7	30.0	38
SCLIP* [45]	ECCV'24	×	✓	<u>59.7</u>	31.7	33.5	<u>81.5</u>	34.5	22.7	16.5	32.3	39
NACLIP* [16]	WACV'25	×	✓	58.9	32.2	33.2	79.7	35.2	23.3	17.4	<u>35.5</u>	39
SFP (Ours)		×	~	63.9	37.2	<u>37.9</u>	84.5	39.9	26.4	20.8	41.1	4 4

Ablation Studies

١.		Ablat	ion of	prop	osed 1	modul	es			
		SOM	SAE	HAI	V21	ADE	Av			
-	0				57.0	16.7	36.			
	1	~			60.1	18.2	39.			
	2	~	~		62.3	19.5	40.			
_	3	>	~	~	63.9	20.8	42.			
	Ablation of different backbones									
-	Rac	khone	Met	hods	V21	ADE	Ave			

1				00.1	10.2	39.		
2	~	~		62.3	19.5	40.		
3	~	~	~	63.9	20.8	42.		
	Ablation of different backbones							
Ba	ckbone	Met	hods	V21	ADE	Avg		
		SCLI	P [45]	50.6	14.8	32.		
		LaVO	G [19]	54.8	15.5	35.		
Vi	T-B/32	ProxyC	LIP [25]	<u>57.9</u>	<u>16.7</u>	37.		
		NACL	IP [16]	51.1	14.9	33.		
		S	FP	60.1	17.1	38.		
		SCLI	P [45]	44.4	10.9	27.		
		LaVG [19]		52.1	17.3	34.		
Vi	T-L/14	ProxyCLIP [25]		60.6	22.6	41.		
		NACL	IP [16]	52.2	17.3	34.		
		S	FP	64.7	<u>22.1</u>	43.		

Ablation	of ag	gregat	ed atte	ention	laye
$A_{l=l_0}^{l=L-1}$	1	5	8	10	11
V21	63.9	63.4	63.0	62.6	62.:
ADE	20.8	20.5	20.3	19.9	19.
Avg.	42.4	42.0	41.7	41.3	41.
				_	

Ablation of different self-self attention								
attention mechanism	V21	ADE	Avg.					
Q-K (baseline)	60.1	18.2	39.2					
Q-Q	62.1	19.3	40.7					
K-K	62.0	19.3	40.7					
V-V	61.4	18.9	40.2					
Q-Q+K-K	62.3	19.5	40.9					
Q-Q+V-V	61.9	19.1	40.5					
K-K+V-V	61.1	18.7	39.9					